The de Bruijn Graph and its efficient representation

Different kind of graph

"tomorrow and tomorrow and tomorrow"

An edge represents an ordered pair of adjacent words in the input

Multigraph: there can be more than one edge from node A to node B

De Bruijn graph

genome:AAABBBBA

One edge per k-mer
One node per distinct k-1-mer

De Bruijn graph

Walk crossing each edge exactly once gives a reconstruction of the genome

De Bruijn graph

AAABBBBA

Walk crossing each edge exactly once gives a reconstruction of the genome . This is an Eulerian walk.

De Bruijn graph

Aside: how do you pronounce "De Bruijn"?
There is debate:
https://www.biostars.org/p/7186/

Nicolaas Govert de Bruijn
1918-- 2012

Directed multigraph

Directed multigraph G(V, E) consists of set of vertices, V and multiset of directed edges, E

Otherwise, like a directed graph

Node's indegree = \# incoming edges
Node's outdegree = \# outgoing edges De Bruijn graph is a directed multigraph

$$
\begin{aligned}
V= & \{a, b, c, d\} \\
E= & \{(a, b),(a, b),(a, b),(a, c),(c, b)\} \\
& \longmapsto \text { Repeated }
\end{aligned}
$$

Eulerian walk definitions and statements

Node is balanced if indegree equals outdegree
Node is semi-balanced if indegree differs from outdegree by 1
Graph is connected if each node can be reached by some other node

Eulerian walk visits each edge exactly once
Not all graphs have Eulerian walks. Graphs that do are Eulerian. (For simplicity, we won't distinguish Eulerian from semi-Eulerian.)

A directed, connected graph is Eulerian if and only if it has at most 2 semi-balanced nodes and all other nodes are balanced

De Bruijn graph

Back to de Bruijn graph

Is it Eulerian? Yes
Argument 1: $\mathrm{AA} \rightarrow \mathrm{AA} \rightarrow \mathrm{AB} \rightarrow \mathrm{BB} \rightarrow \mathrm{BB} \rightarrow \mathrm{BA}$
Argument 2: $A A$ and $B A$ are semi-balanced, $A B$ and $B B$ are balanced

Bloom Filters \& De Bruijn Graphs

Recall the Bloom Filter: how could this data structure be useful for representing a De Bruijn graph?

Say we have a bloom filter B, for all of the k-mers in our data set, and say I give you one k-mer that is truly present.

We now have a "navigational" representation of the De Bruijn graph (can return the set of neighbors of a node, but not select/iterate over nodes); why?

Detour: Bloom Filters \& De Bruijn Graphs

How could this data structure be useful for representing a De Bruijn graph?

A given (k-1)-mer can only have $2^{*}|\Sigma|$ neighbors; $|\Sigma|$ incoming and $|\Sigma|$ outgoing neighbors - for genomes $|\Sigma|=4$

To navigate in the De Bruijn graph, we can simply query all possible successors, and see which are actually present.

Bloom Filters \& De Bruijn Graphs

But, a Bloom filter still has false-positives, right?
May return some neighbors that are not actually present.

Pell et al., PNAS 2012, use a lossy Bloom filter directly
Chikhi \& Rizk, WABI 2012, present a lossless data structure based on Bloom filters

Salikhov et al., WABI 2013 extend this work and introduce the concept of "cascading" Bloom filters

Pellow, Filippova \& Kingsford, RECOMB 2016. Take advantage of "independence" of false positives to lower FP rate for Bloom Filter representations

First, some bounds

On the Representation of De Bruijn Graphs

We use the term membership data structure to refer to a way of representing a dBG and answering k-mer membership queries. We can view this as a pair of algorithms: (CONST, MEMB). The CONST algorithm takes a set of k-mers S (i.e., a dBG) and outputs a bit string. We call const a constructor, since it constructs a representation of a dBG . The memb algorithm takes as input a bit string and a k-mer x and outputs true or false. Intuitively, memb takes a representation of a dBG created by CONST and outputs whether a given k mer is present. Formally, we require that for all $x \in \Sigma^{k}, \operatorname{memb}(\operatorname{CONST}(S), x)$ is true if and only if $x \in S$.

An NDS is a pair of algorithms, CONST and NBR. As before, CONST takes a set of k-mers and outputs a bit string. NBR takes a bit string and a k-mer and outputs a set of k-mers. The algorithms must satisfy that for every dBG S and a k-mer $x \in S$, $\operatorname{Nbr}(\operatorname{Const}(S)$, $x)=\operatorname{ext}(x) \cap S$. Note that if $x \notin S$, then the behavior of $\operatorname{NBR}(\operatorname{CONST}(S), x)$ is undefined. We observe that a membership data structure immediately implies an NDS because an NBR query can be reduced to eight MEMB queries.

In this section, we prove that a navigational data structure on de Bruijn graphs needs at least 3.24 bits per k-mer to represent the graph:

Theorem 1. Consider an arbitrary NDS and let Const be its constructor. For any $0<\epsilon<1$, there exists a k and $x \subseteq \Sigma^{k}$ such that $|\operatorname{const}(x)| \geq|x| \cdot(c-\epsilon)$, where $c=8-3 \lg 3 \approx 3.25$.

Critical False Positives

(a)

Nodes self-information:

$$
\left\lceil\log _{2}\binom{4^{3}}{7}\right\rceil=30 \mathrm{bits}
$$

Structure size:

$$
\underbrace{10}_{\text {Bloom }}+\underbrace{3 \cdot 6}_{\text {False positives }}=28 \mathrm{bits}
$$

(d)

Critical False Positives

Idea of Chkhi and Rizk

Assume we want to represent specific set T0 of k-mers with a Bloom filter B1

Key observation: in assembly, not all k-mers can be queried, only those having k - 1 overlap with k -mers known to be in the graph.

The set T1 of "critical false positives" (false neighbors of true k-mers) is much smaller than the set of all false positives and can be stored explicitly

Storing B1 and T1 is much more space efficient that other exact methods for storing T0. Membership of win T0 is tested by first querying B 1 , and if $\mathrm{w} \in \mathrm{B} 1$, check that it is not in T 1 .

- Represent T_{0} by Bloom filter B_{1}

- Represent T_{0} by Bloom filter B_{1}
- Compute T_{1} ('critical false positives') and represent it e.g. by a hash table

- Represent T_{0} by Bloom filter B_{1}
- Compute T_{1} ('critical false positives') and represent it e.g. by a hash table
- Result (example): 13.2 bits/node for $k=27$ (of which 11.1 bits for B_{1} and 2.1 bits for T_{1})

Improving on Chikhi and Rizk's method

- Main idea: iteratively apply the same construction to T_{1} i.e. encode T_{1} by a Bloom filter B_{2} and set of 'false-false positives' T_{2}, then apply this to T_{2} etc.
- cascading Bloom filters

- further encode T_{1} via a Bloom filter B_{2} and set T_{2}, where $\mathrm{T}_{2} \subseteq \mathrm{~T}_{0}$ is the set of k-mes stored in B_{2} by mistake ('false ${ }^{2}$ positives')

- further encode T_{1} via a Bloom filter B_{2} and $\operatorname{set} T_{2}$, where $\mathrm{T}_{2} \subseteq \mathrm{~T}_{0}$ is the set of k-mers stored in B_{2} by mistake ('false ${ }^{2}$ positives')
- iterate the construction on T_{2}
- we obtain a sequence of sets $T_{0}, T_{1}, T_{2}, T_{3}, \ldots$ encode by Bloom filters $B_{1}, B_{2}, B_{3}, B_{4}, \ldots$ respectively
- $\mathrm{T}_{0} \supseteq \mathrm{~T}_{2} \supseteq \mathrm{~T}_{4} \supseteq \ldots, \mathrm{~T}_{1} \supseteq \mathrm{~T}_{3} \supseteq \mathrm{~T}_{5} \supseteq$

Lemma [correctness]: For a k-mer w, consider the smallest i such that $w \notin B_{i+1}$. Then $w \in T_{0}$ if i is odd and $w \notin T_{0}$ if i is even.

- if $w \notin B_{1}$ then $w \notin T_{0}$
- if $w \in B_{1}$, but $w \notin B_{2}$ then $w \in T_{0}$
- if $w \in B_{1}, w \in B_{2}$, but $w \notin \mathrm{~B}_{3}$ then $w \notin \mathrm{~T}_{0}$
- etc.

Assuming infinite number of filters

Let $N=\left|\mathrm{T}_{0}\right|$ and $r=m_{i} / n_{i}$ is the same for every B_{i}. Then the total size is
$\underbrace{r N}_{\left|B_{1}\right|}+\underbrace{6 r N c^{r}}_{\left|B_{2}\right|}+\underbrace{r N c^{r} \mid}_{\left|B_{3}\right|}+\underbrace{6 r N c^{2 r}}_{\left|B_{4}\right|}+\underbrace{r N c^{2 r}}_{\left|B_{5}\right|}+\ldots=N\left(1+6 c^{r}\right) \frac{r}{1-c^{r}}$

The minimum is achieved for $r=5.464$, which yields the memory consumption of 8.45 bits/node

Infinity difficult to deal with ;)

- In practice we will store only a small finite number of filters $B_{1}, B_{2}, \ldots, B_{t}$ together with the set T_{t} stored explicitely
- $t=1$ $" \rightarrow$ Chkhi\&Rizk's method
- The estimation should be adjusted, optimal value of r has to be updated, example for $\mathrm{t}=4$

k	optimal r	bits per k-mer
16	5.776737	8.555654
32	6.048557	8.664086
64	6.398529	8.824496
128	6.819496	9.045435

Table: Estimations for $t=4$. Optimal r and corresponding memory consumption

Compared to Chikhi\&Rizk's method

k	"Optimal" (infinite) Cascading Bloom Filter	Cascading Bloom Filter with $t=4$	Data structure of Chikhi \& Rizk
16	8.45	8.555654	12.0785
32	8.45	8.664086	13.5185
64	8.45	8.824496	14.9585
128	8.45	9.045435	16.3985

Table: Space (bits/node) compared to Chikhi\&Rizk for $t=4$ and different values of k.

We can cut down a bit more ...

- Rather than using the same r for all filters B_{1}, B_{2}, \ldots, we can use different properly chosen coefficients r_{1}, r_{2}, \ldots
- This allows saving another $0.2-0.4$ bits/k-mer

Experiments I: E.Coli, varying k

- 10M E.Coli reads of 100bp
- 3 versions compared: 1 Bloom (=Chikhi\&Rizk), 2 Bloom ($t=2$) and 4 Bloom ($t=4$)

Experiments II: Human dataset

- 564M Human reads of 100bp (~17X coverage)

Method	1 Bloom	2 Bloom	4 Bloom
Construction time (s)	40160.7	43362.8	44300.7
Traversal time (s)	46596.5	35909.3	34177.2
r (bits)	11.10	8.10	6.56
	$B_{1}=3250.95$	$B_{1}=2372.51$	$B_{1}=1921.20$
$B_{2}=292.65$	$B_{2}=496.92$ $B_{3}=83.39$ $B_{4}=21.57$		
Floom filters size (MB)			$T_{4}=24.07$
Total size (MB)	3796.89	2524.12	2547.15
Size (bits $/ k$-mer)	$\mathbf{1 2 . 9 6}$	$\mathbf{1 0 . 3 7}$	$\mathbf{8 . 7 0}$

* slide courtesy of Salikhov, Sacomoto \& Kucherov

Experiments I (cont)

dBG traversal time

dBG construction time

* slide courtesy of Salikhov, Sacomoto \& Kucherov

Efficiently enumerating cFP

```
Algorithm 1 Constant-memory enumeration of critical
false positives
    1: Input: The set \(\mathcal{S}\) of all nodes in the graph, the Bloom
    filter constructed from \(\mathcal{S}\), the maximum number \(M\)
    of elements in each partition (determines memory
    usage)
    Output: The set cFP
    Store on disk the set \(\mathcal{P}\) of extensions of \(\mathcal{S}\) for which
    the Bloom filter answers yes
    Free the Bloom filter from memory
    \(D_{0} \leftarrow \mathcal{P}\)
    \(i \leftarrow 0\)
    while end of \(\mathcal{S}\) is not reached do
        \(P_{i} \leftarrow \emptyset\)
        while \(\left|P_{i}\right|<M\) do
            \(P_{i} \leftarrow P_{i} \cup\{\) next \(k\)-mer in \(\mathcal{S}\}\)
        for each \(k\)-mer \(m\) in \(D_{i}\) do
            if \(m \notin P_{i}\) then
            \(D_{i+1} \leftarrow D_{i+1} \cup\{m\}\)
        Delete \(D_{i}, P_{i}\)
        \(i \leftarrow i+1\)
    \(\mathrm{cFP} \leftarrow D_{i}\)
```


Bloom filters \& De Bruijn Graphs

So, we can make very small representation of the dBG . But it's navigational! We can also make them:

Practical dynamic de Bruijn graphs

Dynamic \& membership

Victoria G. Crawford ${ }^{1, \dagger}$, Alan Kuhnle ${ }^{1, \dagger}$, Christina Boucher ${ }^{1}$, Rayan Chikhi ${ }^{2}$ and Travis Gagie ${ }^{3, *}$

${ }^{1}$ Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32306, USA, ${ }^{2}$ CNRS, CRIStAL, University of Lille, Lille, France and ${ }^{3} \mathrm{CeBiB}$ and School of Computer Science and Engineering, Diego Portales University, Santiago, Chile
deBGR: an efficient and near-exact representation of the weighted de Bruijn graph

Prashant Pandey ${ }^{1}$, Michael A. Bender ${ }^{1}$, Rob Johnson ${ }^{1,2}$ and Rob Patro ${ }^{1, *}$
${ }^{1}$ Department of Computer Science, Stony Brook University, Stony Brook, NY 11790, USA, ${ }^{2}$ VMWare, Inc., Palo Alto, CA 94304
*To whom correspondence should be addressed.

