
The de Bruĳn Graph and
its efficient

representation

Different kind of graph

tomorrow

“tomorrow and tomorrow and tomorrow”

and

An edge represents an ordered pair of adjacent
words in the input

Multigraph: there can be more than one edge from
node A to node B

Lecture slides adapted from the dBG lecture slides of Ben Langmead.
All slides in this lecture marked with “*” courtesy of Ben Langmead. *

De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA
AAABBBBA

3-mers:

L/R 2-mers:AA, AA AA, AB AB, BB BB, BB BB, BB BB, BA

genome:

AA
AB

BA
BB

One edge per k-mer
One node per distinct k-1-mer

*

De Bruijn graph

AA
AB

BA
BB

Walk crossing each edge exactly once gives a
reconstruction of the genome

*

De Bruijn graph

BA
1 2

3

4 5

6
AA

AB

BB

AAABBBBA
Walk crossing each edge exactly once gives a
reconstruction of the genome . This is an Eulerian walk.

*

De Bruijn graph

Aside: how do you pronounce "De Bruijn"?

https://www.biostars.org/p/7186/

There is debate:

Nicolaas
Govert de

Bruijn
1918 -- 2012

*

https://www.biostars.org/p/7186/

Directed multigraph

Directed multigraph G(V, E) consists of set of vertices, V and
multiset of directed edges, E

Otherwise, like a directed graph

a b

c d

V = { a, b, c, d }
E = { (a, b), (a, b), (a, b), (a, c), (c, b) }

Repeated

Node’s indegree = # incoming edges

Node’s outdegree = # outgoing edges
De Bruijn graph is a directed
multigraph

Eulerian walk definitions and statements

Node is balanced if indegree equals outdegree

Node is semi-balanced if indegree differs from outdegree by 1

A directed, connected graph is Eulerian if
and only if it has at most 2 semi-balanced
nodes and all other nodes are balanced

Graph is connected if each node can be reached by some other
node

Jones and Pevzner section 8.8

AA

AB

BA

BB

Eulerian walk visits each edge exactly once

Not all graphs have Eulerian walks. Graphs that do are Eulerian.
(For simplicity, we won’t distinguish Eulerian from semi-Eulerian.)

*

De Bruijn graph

AAA, AAB, ABB, BBB, BBA

Back to de Bruijn graph

AA, AA, AA, AB, AB, BB, BB, BB, BB, BA
AA

AB

BA
BB L R L R L R L R L R

Is it Eulerian?

Argument 1: AA → AA → AB → BB → BB → BA
Argument 2: AA and BA are semi-balanced, AB and BB are balanced

Yes

Bloom Filters & De Bruijn Graphs

Recall the Bloom Filter: how could this data structure be
useful for representing a De Bruijn graph?

Say we have a bloom filter B, for all of the k-mers in our
data set, and say I give you one k-mer that is truly present.

We now have a “navigational” representation of the
De Bruijn graph (can return the set of neighbors of a
node, but not select/iterate over nodes); why?

Detour: Bloom Filters & De Bruijn Graphs

How could this data structure be useful for representing
a De Bruijn graph?

A given (k-1)-mer can only have 2*|Σ| neighbors;
|Σ| incoming and |Σ| outgoing neighbors — for

genomes |Σ| = 4

To navigate in the De Bruijn graph, we can simply
query all possible successors, and see which are

actually present.

 Bloom Filters & De Bruijn Graphs
But, a Bloom filter still has false-positives, right?

May return some neighbors that are not actually present.

Pell et al., PNAS 2012, use a lossy Bloom filter directly

Chikhi & Rizk, WABI 2012, present a lossless data structure
based on Bloom filters

Salikhov et al., WABI 2013 extend this work and introduce
the concept of “cascading” Bloom filters

Pellow, Filippova & Kingsford, RECOMB 2016. Take
advantage of “independence” of false positives to lower

FP rate for Bloom Filter representations

First, some bounds

Critical False Positives

Chikhi & Rizk
“toy” hash

func (not used in practice)

Critical False Positives

Chikhi & Rizk

“true”
k-mers

encoded in
BF, but not
“reachable”

critical FP

“toy” hash
func (not used in practice)

Idea of Chkhi and Rizk

* slide courtesy of Salikhov, Sacomoto & Kucherov

Assume we want to represent specific set T0 of k-mers
with a Bloom filter B1

Key observation: in assembly, not all k-mers can be queried, only
those having k-1 overlap with k-mers known to be in the graph.

The set T1 of “critical false positives” (false neighbors of true
k-mers) is much smaller than the set of all false positives and
can be stored explicitly

Storing B1 and T1 is much more space efficient that other
exact methods for storing T0. Membership of w in T0 is tested
by first querying B1, and if w ∈ B1, check that it is not in T1.

false positives of B1 T0

�  Represent T0 by Bloom filter B1

* slide courtesy of Salikhov, Sacomoto & Kucherov

false positives of B1 T0

T1

�  Represent T0 by Bloom filter B1

�  Compute T1 (‘critical false positives’) and represent it e.g.
by a hash table

* slide courtesy of Salikhov, Sacomoto & Kucherov

false positives of B1 T0

T1

�  Represent T0 by Bloom filter B1

�  Compute T1 (‘critical false positives’) and represent it e.g.
by a hash table

�  Result (example): 13.2 bits/node for k=27 (of which 11.1
bits for B1 and 2.1 bits for T1)

* slide courtesy of Salikhov, Sacomoto & Kucherov

Improving on Chikhi and Rizk’s method

�  Main idea: iteratively apply the same construction to T1 i.e.
encode T1 by a Bloom filter B2 and set of ‘false-false
positives’ T2, then apply this to T2 etc.

�  ☞ cascading Bloom filters

* slide courtesy of Salikhov, Sacomoto & Kucherov

false positives of B1 T0

T1

* slide courtesy of Salikhov, Sacomoto & Kucherov

false positives of B1 T0

T1

�  further encode T1 via a Bloom filter B2 and set T2, where
T2⊆T0 is the set of k-mers stored in B2 by mistake
(‘false2 positives’)

T2

* slide courtesy of Salikhov, Sacomoto & Kucherov

false positives of B1 T0

T1

�  further encode T1 via a Bloom filter B2 and set T2, where
T2⊆T0 is the set of k-mers stored in B2 by mistake
(‘false2 positives’)

�  iterate the construction on T2
�  we obtain a sequence of sets T0, T1, T2, T3, … encode by

Bloom filters B1, B2, B3, B4, … respectively
�  T0⊇T2⊇T4⊇… , T1⊇T3⊇T5⊇

T2 T3 T4 T5

* slide courtesy of Salikhov, Sacomoto & Kucherov

Correctness

Lemma [correctness]: For a k-mer w, consider the smallest i such
that w∉Bi+1. Then w∈T0 if i is odd and w∉T0 if i is even.

�  if w∉B1 then w∉T0
�  if w∈B1, but w∉B2 then w∈T0
�  if w∈B1, w∈B2, but w∉B3 then w∉T0
�  etc.

false positives of B1 T0

T1
T2 T3 T4 T5

* slide courtesy of Salikhov, Sacomoto & Kucherov

Assuming infinite number of filters

Let N=|T0| and r=mi/ni is the same for every Bi. Then the
total size is

rN + 6rNcr + rNcr + 6rNc2r + rNc2r +... =N(1+6cr)

r
1− cr

|B1| |B2| |B3| |B4| |B5|

The minimum is achieved for r=5.464, which yields the
memory consumption of 8.45 bits/node

* slide courtesy of Salikhov, Sacomoto & Kucherov

Infinity difficult to deal with ;)

-  In practice we will store only a small finite number of filters
B1, B2,…, Bt together with the set Tt stored explicitely

-  t=1 ➟ Chkhi&Rizk’s method
-  The estimation should be adjusted, optimal value of r has to be

updated, example for t=4

Table: Estimations for t=4. Optimal r and
corresponding memory consumption

* slide courtesy of Salikhov, Sacomoto & Kucherov

Compared to Chikhi&Rizk’s method

Table: Space (bits/node) compared to Chikhi&Rizk
for t=4 and different values of k.

* slide courtesy of Salikhov, Sacomoto & Kucherov

We can cut down a bit more …

-  Rather than using the same r for all filters B1, B2,…, we
can use different properly chosen coefficients r1,r2, …

-  This allows saving another 0.2 – 0.4 bits/k-mer

* slide courtesy of Salikhov, Sacomoto & Kucherov

Experiments I: E.Coli, varying k

-  10M E.Coli reads of 100bp
-  3 versions compared: 1 Bloom (=Chikhi&Rizk), 2

Bloom (t=2) and 4 Bloom (t=4)

* slide courtesy of Salikhov, Sacomoto & Kucherov

Experiments II: Human dataset

-  564M Human reads of 100bp (~17X coverage)

* slide courtesy of Salikhov, Sacomoto & Kucherov

Experiments I (cont)

* slide courtesy of Salikhov, Sacomoto & Kucherov

Efficiently enumerating cFP

Chicki & Rizk (2013) : https://almob.biomedcentral.com/articles/10.1186/1748-7188-8-22

https://almob.biomedcentral.com/articles/10.1186/1748-7188-8-22

Bloom filters & De Bruijn Graphs
So, we can make very small representation of the dBG.
But it’s navigational! We can also make them:

Dynamic &
membership

and even
weighted

