
The de Bruĳn Graph and 
its efficient 

representation



Different kind of graph

tomorrow

“tomorrow and tomorrow and tomorrow”

and

An edge represents an ordered pair of adjacent 
words in the input

Multigraph: there can be more than one edge from 
node A to node B

Lecture slides adapted from the dBG lecture slides of Ben Langmead. 
All slides in this lecture marked with “*” courtesy of Ben Langmead. *



De Bruijn graph

AAA, AAB, ABB, BBB, BBB, BBA
AAABBBBA

3-mers:

L/R 2-mers:AA, AA AA, AB AB, BB BB, BB BB, BB BB, BA

genome:

AA
AB

BA
BB

One edge per k-mer
One node per distinct k-1-mer

*



De Bruijn graph

AA
AB

BA
BB

Walk crossing each edge exactly once gives a 
reconstruction of the genome

*



De Bruijn graph
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AAABBBBA
Walk crossing each edge exactly once gives a 
reconstruction of the genome .  This is an Eulerian walk.

*



De Bruijn graph

Aside: how do you pronounce "De Bruijn"?

https://www.biostars.org/p/7186/

There is debate:

Nicolaas 
Govert de 

Bruijn
1918 -- 2012

*

https://www.biostars.org/p/7186/


Directed multigraph

Directed multigraph G(V, E) consists of set of vertices, V and 
multiset of directed edges, E

Otherwise, like a directed graph

a b

c d

V =  { a, b, c, d }
E =  { (a, b), (a, b), (a, b), (a, c), (c, b) }

Repeated

Node’s indegree = # incoming edges

Node’s outdegree = # outgoing edges
De Bruijn graph is a directed 
multigraph



Eulerian walk definitions and statements

Node is balanced if indegree equals outdegree

Node is semi-balanced if indegree differs from outdegree by 1

A directed, connected graph is Eulerian if 
and only if it has at most 2 semi-balanced 
nodes and all other nodes are balanced

Graph is connected if each node can be reached by some other 
node

Jones and Pevzner section 8.8

AA

AB

BA

BB

Eulerian walk visits each edge exactly once

Not all graphs have Eulerian walks.  Graphs that do are Eulerian. 
(For simplicity, we won’t distinguish Eulerian from semi-Eulerian.)

*



De Bruijn graph

AAA, AAB, ABB, BBB, BBA

Back to de Bruijn graph

AA, AA, AA, AB, AB, BB, BB, BB, BB, BA
AA

AB

BA
BB L R L R L R L R L R

Is it Eulerian?

Argument 1:  AA → AA → AB → BB → BB → BA
Argument 2: AA and BA are semi-balanced, AB and BB are balanced

Yes



Bloom Filters & De Bruijn Graphs

Recall the Bloom Filter: how could this data structure be 
useful for representing a De Bruijn graph?

Say we have a bloom filter B, for all of the k-mers in our 
data set, and say I give you one k-mer that is truly present.

We now have a “navigational” representation of the  
De Bruijn graph (can return the set of neighbors of a 
node, but not select/iterate over nodes); why?



Detour: Bloom Filters & De Bruijn Graphs

How could this data structure be useful for representing 
a De Bruijn graph?

A given (k-1)-mer can only have 2*|Σ| neighbors; 
|Σ| incoming and |Σ| outgoing neighbors — for 

genomes |Σ| = 4

To navigate in the De Bruijn graph, we can simply 
query all possible successors, and see which are 

actually present.



 Bloom Filters & De Bruijn Graphs
But, a Bloom filter still has false-positives, right?

May return some neighbors that are not actually present.

Pell et al., PNAS 2012, use a lossy Bloom filter directly

Chikhi & Rizk, WABI 2012, present a lossless data structure 
based on Bloom filters

Salikhov et al., WABI 2013 extend this work and introduce 
the concept of “cascading” Bloom filters 

Pellow, Filippova & Kingsford, RECOMB 2016. Take 
advantage of “independence” of false positives to lower 

FP rate for Bloom Filter representations



First, some bounds



Critical False Positives

Chikhi & Rizk
“toy” hash 

func (not used in practice)



Critical False Positives

Chikhi & Rizk

“true” 
k-mers

encoded in 
BF, but not 
“reachable”

critical FP

“toy” hash 
func (not used in practice)



Idea of Chkhi and Rizk

* slide courtesy of Salikhov, Sacomoto & Kucherov 

Assume we want to represent specific set T0 of k-mers 
with a Bloom filter B1

Key observation: in assembly, not all k-mers can be queried, only 
those having k-1 overlap with k-mers known to be in the graph.

The set T1 of “critical false positives” (false neighbors of true 
k-mers) is much smaller than the set of all false positives and 
can be stored explicitly

Storing B1 and T1 is much more space efficient that other 
exact methods for storing T0. Membership of w in T0 is tested 
by first querying B1, and if w ∈ B1, check that it is not in T1.



false positives of B1 T0 

�  Represent T0 by Bloom filter B1 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



false positives of B1 T0 

T1 

�  Represent T0 by Bloom filter B1 

�  Compute T1 (‘critical false positives’) and represent it e.g. 
by a hash table 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



false positives of B1 T0 

T1 

�  Represent T0 by Bloom filter B1 

�  Compute T1 (‘critical false positives’) and represent it e.g. 
by a hash table 

�  Result (example): 13.2 bits/node for k=27 (of which 11.1 
bits for B1 and 2.1 bits for T1) 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



Improving on Chikhi and Rizk’s method 

�  Main idea: iteratively apply the same construction to T1 i.e. 
encode T1 by a Bloom filter B2 and set of ‘false-false 
positives’ T2, then apply this to T2 etc.  

�  ☞ cascading Bloom filters 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



false positives of B1 T0 

T1 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



false positives of B1 T0 

T1 

�  further encode T1 via a Bloom filter B2 and set T2, where  
T2⊆T0 is the set of k-mers stored in B2 by mistake 
(‘false2 positives’) 

T2 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



false positives of B1 T0 

T1 

�  further encode T1 via a Bloom filter B2 and set T2, where  
T2⊆T0 is the set of k-mers stored in B2 by mistake 
(‘false2 positives’) 

�  iterate the construction on T2  
�  we obtain a sequence of sets T0, T1, T2, T3, … encode by 

Bloom filters B1, B2, B3, B4, … respectively 
�  T0⊇T2⊇T4⊇… , T1⊇T3⊇T5⊇ 

T2 T3 T4 T5 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



Correctness 

Lemma [correctness]: For a k-mer w, consider the smallest i such 
that w∉Bi+1. Then w∈T0 if i is odd and w∉T0 if i is even.  

�  if w∉B1 then w∉T0 
�  if w∈B1, but w∉B2 then w∈T0  
�  if w∈B1, w∈B2, but w∉B3 then w∉T0  
�  etc. 

false positives of B1 T0 

T1 
T2 T3 T4 T5 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



Assuming infinite number of filters 

Let N=|T0| and r=mi/ni is the same for every Bi.   Then the 
total size is 

rN + 6rNcr + rNcr + 6rNc2r + rNc2r +... =N(1+6cr) 

 

r
1− cr

|B1| |B2| |B3| |B4| |B5| 

The minimum is achieved for r=5.464, which yields the 
memory consumption of 8.45 bits/node 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



Infinity difficult to deal with ;) 

-  In practice we will store only a small finite number of filters  
B1, B2,…, Bt together with the set Tt stored explicitely 

-  t=1 ➟ Chkhi&Rizk’s method 
-  The estimation should be adjusted, optimal value of r has to be 

updated, example for t=4 

Table: Estimations for t=4. Optimal r and  
corresponding memory consumption 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



Compared to Chikhi&Rizk’s method 

Table: Space (bits/node) compared to Chikhi&Rizk  
for t=4 and different values of k. 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



We can cut down a bit more … 

-  Rather than using the same r for all filters B1, B2,…, we 
can use different properly chosen coefficients r1,r2, …  

-  This allows saving another 0.2 – 0.4 bits/k-mer 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



Experiments I:   E.Coli, varying k 

-  10M E.Coli reads of 100bp 
-  3 versions compared: 1 Bloom (=Chikhi&Rizk), 2 

Bloom (t=2) and 4 Bloom (t=4) 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



Experiments II: Human dataset 

-  564M Human reads of 100bp (~17X coverage) 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



Experiments I (cont) 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



Efficiently enumerating cFP

Chicki & Rizk (2013) : https://almob.biomedcentral.com/articles/10.1186/1748-7188-8-22

https://almob.biomedcentral.com/articles/10.1186/1748-7188-8-22


Bloom filters & De Bruijn Graphs
So, we can make very small representation of the dBG. 
But it’s navigational! We can also make them:

Dynamic &  
membership

and even 
weighted


